
Markov Decision Processes - Code Link

Joseph Waugh
Georgia Tech ID: 903563084

CS 7641: Machine Learning
Spring 2022

April 18, 2022

1 Abstract

This assignment will cover the implementation of two dif-
ferent Markov Decision Processes (MDPs): Forest Man-
agement the Frozen Lake process. In comparing the two
problems, the Frozen Lake process is a Grid Search prob-
lem, whereas the Forest Management solution is a non-grid
world problem. These two MDPs will be solved using three
different methods: Value Iteration, Policy Iteration, and
Q-Learning (reinforcement learning). A comparison of the
three algorithms, including the methodology and results,
will be used to clarify the advantages and disadvantages
of using a particular algorithm.

2 MDP Environments

2.1 Frozen Lake

The below excerpt explains the Frozen Lake MDP:

Winter is here. You and your friends were tossing around
a frisbee at the park when you made a wild throw that left
the frisbee out in the middle of the lake. The water is
mostly frozen, but there are a few holes where the ice has
melted. If you step into one of those holes, you’ll fall into
the freezing water. At this time, there’s an international
frisbee shortage, so it’s absolutely imperative that you nav-
igate across the lake and retrieve the disc. However, the
ice is slippery, so you won’t always move in the direction
you intend.

For this report, the associated states are in two maps:
8x8 and 20x20. In this Frozen Lake MDP, the agent can
move any cardinal direction, as defined in the set A:

A = {0, 1, 2, 3}
where 0 = Left, 1 = Down, 2 = Right, 3 = Up

The entire grid for the 8x8 example can be repre-
sented by a set S of the different states:

S = {0,1,2,3,4,5,. . . ,64}

Figure 1: Frozen Lake - 4x4 Grid States

In traversing the different states based on one of the four
directions, there are probabilities associated with traveling
a given direction. For example, in state 10 with action 1
(down), our probabilities of moving in each direction are
shown below:

Figure 2: Frozen Lake - State Probabilities - Action 1
(Down)

When traversing through the various states, the associated
reward is 0 when traversing through all states not included
in the final episode state. These states are defined as the
following: Frozen State (F), Goal State (G), Hole State
(H), and Start State (S). Using a simpler example, the
following grid can traversed to go from S to G, without
falling into H.

Figure 3: Frozen Lake Grid Example (4x4 Grid)

Based on this, the following paths can be taken to reach
state S to state G without falling into a state H:

1 (Start) → 2 → 3 → 7 → 11 → 15 → 16(Goal)
1 (Start) → 5 → 9 → 10 → 11 → 15 → 16(Goal)

Figure 4: Frozen Lake - 4x4 Grid Traversal Paths

1

https://drive.google.com/drive/folders/1viIwAV1ncifaLb-O0yZpIMZPxGEy-QxZ?usp=sharing


There are other ways to traverse the above grid, but the
following confirms that there are possible methods that
can be taken to reach the desired state via a MDP. Given
that we’re focusing on two separate grids in this report’s
MDP (8x8 and 20x20), we can evaluate the different num-
ber of states in each (8x8: 64 states; 20x20: 400 states)
and see the impact in the final results.

2.2 Forest Management

The below excerpt explains the Forest Management MDP:

A forest is managed by two actions: ‘Wait’ and ‘Cut’.
An action is decided each year with the objective to main-
tain an old forest for wildlife and make money selling cus-
tomers wood. Each year, there is a probability (P) that
a fire burns the forest. Let 0, 1, ..., s-1 be the states of
the forest, with s-1 being the oldest. Let ’Wait’ be action
0 and ’Cut’ be action 1. After a fire, the forest is in the
youngest state, that is state 0.

This problem isn’t explicitly defined using a grid. Instead,
there are multiple states that are to be used to solve this
problem. For this analysis a 5 state scenario was used for
comparison. The following age-classification bins can be
used for the 5 different states of this forest management
problem:

• age of trees: 0-1 year (state 1)

• age of trees: 1-2 years (state 2)

• age of trees: 2-3 years (state 3)

• age of trees: 3-4 years (state 4)

• age of trees: more than 4 years (state 5)

In this scenario, state 5 is classified as the oldest age-class.
At the end of a period t, if state s occurs at period t with
the action Wait, then the next period will be min(s+1, 5)
if a fire has not occurred; however, a probability remains of
a fire to occur, thus allowing the option of returning back
to state 1 (0-1 year). This report assumes that a proba-
bility of a wildfire is 10 percent (0.1), thus the challenge
is determining how to manage the goals and maximize the
reward associated with the problem.

3 Markov Decision Process
Solvers

3.1 Policy Iteration

The policy iteration solver focuses on two primary ideas to
determine an optimal solution for the MDP. Specifically,
this algorithm uses policy evaluation and policy improve-
ment, where improvement over a prior policy is saved via
iteration until the policy is deemed ”stable”, which means
changes are no longer observed when following a specific
sequence.

Figure 5: Policy Iteration Cycle

Policy iteration often works well in terms of converging to
an optimal result in a fewer amount of iterations; however,
each of these iterations requires policy evaluation, which
requires a complete evaluation of the entire set of states
in multiple iterations, which can be computationally and
time consuming before reaching the converged result.

3.2 Value Iteration

The value iteration solver differs from the policy iteration
algorithm. While the policy iteration algorithm focuses
on finding the best policy given a current evaluation, the
value iteration algorithm focuses on achieving the best
evaluation given the best available policy. This process
utilizes step-by-step processes for policy evaluation and
improvement, and ultimately combines the two formulas
to solve a MDP. Each iteration doesn’t fully complete, but
rather it is improved until convergence. Value Iteration
still allows for convergence to optimal values, and is espe-
cially beneficial for smaller grid-world problems, as fewer
states result in a less computationally-expensive process
for computing expectimax for each state. With that being
said, if the number of states are large, the value iteration
algorithm requires huge amounts of computational power
and time to converge to an optimal result.

3.3 Q-Learning

The Q-Learning solver focuses on a fixed-policy solution
by determining the expected value of a given action in a
particular state. This solver is able to compare the ex-
pected value, of all actions without having to necessarily
model the environment, as the ”reward” for a given state
traversal (i.e., moving from a single state to a new state,
and evaluating whether or not this was a positive or nega-
tive move) helps to determine how the algorithm improves
via reinforcement learning.

4 Results

4.1 Frozen Lake

For the Frozen Lake algorithm, two different state grid-
world sizes were used for evaluation: 8x8 and 20x20.

4.1.1 Policy Iteration

To assess this MDP via policy iteration, various gamma
(discount rate) values were used: 0.9999, 0.99, 0.9, and 0.5.

2



A standard 10,000 episodes were assessed for measuring
the impact on the discount rate, and 100 iterations were
used for this process.

The first stage of this analysis was determining the impact
of discount rate (gamma). The obtained results suggest
that a higher discount rate leads to a larger overall average
mean reward. Therefore, in this 8x8 grid-world MDP, it
makes sense to include a large gamma value for optimized
results. Based on the above visualization, a Gamma value
of 0.8 results in roughly 80 percent success at arriving at
the Goal state without falling into the Hole states in the
grid.

Figure 6: Discount Rate Average Reward Mean
8x8 Grid

The same analysis was performed for the 20x20 grid, and
thus yielded similar results in terms of a trend, but in-
cluded much lower reward values due to likely not being
able to converge to an optimal solution; however, the trend
of a positive reward with a larger gamma value still sug-
gests that a larger gamma value works in reaching the best
possible result. To fully assess if this is true for a larger
range of gamma values, the same experiment was per-
formed with a new set of gamma values: [0.9999, 0.99999,
0.999999, 0.9999999], which yielded the following results.

Figure 7: Discount Rate Average Processing Time
8x8 Grid

Again, we continue to see a positive trend in terms of the
average reward based on the increased gamma values. An-
other area to research is the impact of increasing Gamma
with regards to processing time to converge to the optimal
solution (or reach the maximum number of iterations spec-
ified). The same experiment was performed for our initial
8x8 grid, and suggests that a larger value for Gamma re-

sults in increased processing time at what appears to be a
log scale.

Figure 8: Discount Rate Average Processing Time
8x8 Grid

When performing the same experiment for our 20x20
grid, these results are further confirmed that an increased
Gamma value increases the processing time. Therefore,
this becomes an important consideration to factor in the
reward of increased accuracy, while also having to expend
more time and computational power to achieve these re-
sults with the higher values for Gamma. While the results
obtained here suggest that an increase in Gamma, which
yields a positive impact in terms of the success of the final
result, there’s only a marginal increase in the overall time
required to converge to an optimal solution. This sug-
gests that this marginal increase isn’t enough to warrant
any considerations towards decreasing gamma for smaller
grid problems (assuming our 8x8 and 20x20 are both con-
sidered small); however, if we exponentially increase the
size of our grid, this can play a significant role in the com-
putational resources required to process the problem.

Figure 9: Discount Rate Average Processing Time
20x20 Grid

4.1.2 Value Iteration

For the Value Iteration solver, again the 8x8 grid and the
20x20 grid were assessed in terms of the discount rate vs.
average reward mean and processing time.

In assessing this MDP via value iteration, the following
gamma rates were used: 0.9999, 0.99, 0.9, and 0.5. Again,
our 10,000 episodes and 100 iterations were used in this
process. In beginning our initial analysis for the impact
of gamma versus the discount rate, we were again able to

3



see that for this solver, a larger Gamma rate leads to an
increased average reward mean.

Figure 10: Discount Rate Average Reward Mean
8x8 Grid

Again, iterating through this process with our larger 20x20
grid, we see the same trend: a larger Gamma value results
in an increased average reward.

Figure 11: Discount Rate Average Reward Mean
20x20 Grid

Next, our second test focused on the impact of our dis-
count rate vs. the average processing time. Similar to
what we viewed in the Policy Iteration results, a higher
gamma rate results in increased processing time. Again,
we are able to see with the 8x8 grid an increased gamma
rate also increased the required time to converge to an
optimal result.

Figure 12: Discount Rate Average Reward Mean
8x8 Grid

This same conclusion is the result for the 20x20 grid.
Again, this consideration doesn’t have a huge impact on
smaller grid-world MDP problems, but rather should be

an area of consideration for larger grids.

Figure 13: Discount Rate Average Reward Mean
20x20 Grid

4.1.3 Q-Learning

To analyze the Q-Learning algorithm, I focused on changes
to the number of episodes, decay rate, and time required
for convergence. To begin, the initial starting parameters
that were used include our 8x8 grid and 20x20 grid. The
default number of iterations in this portion of the work
was 900.

In our 8x8 grid, we’re able to see that the increased number
of episodes has a positive impact on the final mean target
value. This visualization is shown below, specifically with
900 and 100 episodes.

Figure 14: Number of Episodes Average Reward
8x8 Grid

The same trend can be observed when focusing on the
20x20 grid. This trend holds true for this example; how-
ever, the issue here is that the results fail to converge, as
shown in the average target value hovering around -1.

Figure 15: Number of Episodes Average Reward
20x20 Grid

4



Nonetheless, the conclusion of an increased number of
episodes still suggests that this will provide an optimal
result. The resulting path traversal obtained for our 900
iteration test with Q-Learning in the 8x8 grid is shown
below:

Figure 16: Q-Learning Path Traversal Example
8x8 Grid

The next item to review is the impact with decay rate
on the overall target score for this solver. Specifically,
when focusing on our example with the 8x8 grid, we can
see a trend of a decreasing alpha and increasing number
of iterations leads the result towards convergence, as 250
iterations were required to reach convergence.

Figure 17: Q-Learning Iterations and Decay
8x8 Grid

This same trend was observed for our 20x20 trend, and it
could likely be attributed to a couple of items: first, the
decaying alpha value allows the convergence to the optimal
result to not miss the target value as more iterations pass,
wheras early on in the process the model can take larger
”steps” in order to close the potential gap of where this
result might be found.

In order to compare the time of this Q-Learning algorithm,
I reviewed the number of iterations required for conver-
gence in addition to the overall time required to reach
convergence among the three solvers. Specifically, the Q-
Learning method takes the longest in terms of iterations
and in the average time required to reach convergence.

Figure 18: MDP Mean Time Required
8x8 Grid

In looking at these two graphs, it’s clear to see that the
overall time required (looking at the Y-axis) is the high-
est among the three MDPs, and the number of iterations
required also is the largest for the Q-Learning MDP.

4.2 Forest Management

For the Forest Management MDP, I utilized a 5-state
environment for comparative analysis. In addition, I
used a variable discount rate (ranging from 0.5 to 0.95)
in order to test the incremental changes to the model.
In a future study, it would be possible to increase the
r1andr2valuesinordertoreachthefinalstateandstillmaintainapositiverewardvalue.Inalateranalysis, Iuseda500−
stateenvironmentforcomparativeanalysistoanalyzealarger−
stateproblem.

4.2.1 Policy Iteration

To begin, the Policy Iteration implementation via mdp-
toolbox was able to output the same policy continuously
in ¡ 0.1 seconds. In terms of iterations, our initial im-
plementation was able to achieve a result in 4 iterations
of testing. Our implementation with a lower decay value
resulted in less iterations required to reach the optimal
result. Nonetheless, the small number of iterations re-
quired may mean that the incremental small changes to
the policy in each iteration is the optimal methodology
when utilizing this type of environment.

In focusing on our 500 state example, we were able to
achieve a successful result in only 2 iterations, equalling
0.019 seconds to reach the optimal solution. Given that
the large increase in states doesn’t amount to significant
computational power changes required, this appears to be
a good algorithm that can be utilized regardless of state
size.

4.2.2 Value Iteration

In comparison to Policy Iteration, Value Iteration per-
formed very similarly to PI, with the focus here being
an increase in the required iterations to determine the op-
timal policy. For example, the same optimal policy was
identified when utilizing Policy Iteration, but the below
chart showcases that the number of iterations in the VI
method is larger. In situations where larger state sets need

5



to be traversed, this can potentially require much more
computational power versus a different methodology.

Next, focusing on the 500 state example, we were able to
achieve a successful result in 4 iterations with a process-
ing time of ¡ 0.1 seconds. Similar again to Policy Iteration,
the computational power doesn’t have any sort of limit-
ing factor with an exponential increase in the number of
states.

Figure 19: Convergence Iterations
5-State Environment

4.2.3 Q-Learning

Q Learning differs from the Policy and Value Iteration
strategies, given that the environment needs to be tra-
versed. In order to test the differences for this type of
solver, various types of ”learning rate decay” values were
tested to see which provides the optimal result. The over-
all Q-Learning result appears to differ from Value and
Policy Iteration results, given that the results appear to
change significantly in the outer states.

Figure 20: Optimal State Values (Decay = 0.25)
5-State Environment

In comparing these results to a higher decay value, we can
see that the results remain similar across the three models
in the same 5-state environment. Therefore, the higher
decay values allows for increased values for each progres-
sive state, in addition to allowing all of the algorithms to
perform similarly.

Figure 21: Optimal State Values (Decay = 0.7)
5-State Environment

Next, comparing these results to the results obtained in
the 500-state instance, we see massive increases in pro-
cessing time required with the change in number of states.
In our original 5-state solution, the associated processing
time was 0.23 seconds, whereas for our 500-state solution,
the new processing time is now 0.5 seconds. The process-
ing time has more than doubled, and thus, this should be
a consideration when determining which algorithms are
optimal for larger-state environments.

5 Conclusion

In conclusion, there are three different methods that were
used in this Markov Decision Process analysis. Both
model-based solutions (Policy Iteration and Value Itera-
tion) benefited due to utilizing inputs from the model in
order to produce optimal policies. The optimal nature of
these models is shown by the strong mean reward values
for each of these, in addition to the mean time spent for
training each of these models.

Q Learning proved to be more difficult, purely as a result
of the environment having to react to the model rather
than having a direct interaction with just the model in-
stead. Due to having to interact with the entire environ-
ment, there are instances where the Q-Learning algorithm
fails to rach the optimal solution (i.e., the Frozen Lake
environment with the larger grid size.

When analyzing the Frozen Lake vs Forest Management
environments, it’s clear to see that the grid-based envi-
ronment is easier for the Policy Iteration examples due to
the ”connectedness” of the policies. In these instances,
increasing the overall size of the environment doesn’t play
a massive role in the achieved result; however, this proves
to be a difficult strategy for Q-Learning instead.

6 References

• Markov Decision Process (MDP) Toolbox link

6

https://pymdptoolbox.readthedocs.io/en/latest/api/mdp.html

	Abstract
	MDP Environments
	Frozen Lake
	Forest Management

	Markov Decision Process Solvers
	Policy Iteration
	Value Iteration
	Q-Learning

	Results
	Frozen Lake
	Policy Iteration
	Value Iteration
	Q-Learning

	Forest Management
	Policy Iteration
	Value Iteration
	Q-Learning


	Conclusion
	References

